AI Code Generator, Cheap GPU Servers for Code LLMs

Discover the power of our AI Code Generator and GPU servers designed for code LLMs. Enhance your coding efficiency and performance today.

Cheap GPU Servers for AI Code Generator

We offer cost-effective NVIDIA GPU optimized servers for coding large language models (LLMs).
Flash Sale to June 16

Professional GPU VPS - A4000

  • 32GB RAM
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • Once per 2 Weeks Backup
  • OS: Linux / Windows 10/ Windows 11
  • Dedicated GPU: Quadro RTX A4000
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS
1mo3mo12mo24mo
44% OFF Recurring (Was $179.00)
99.00/mo

Advanced GPU Dedicated Server - V100

  • 128GB RAM
  • Dual 12-Core E5-2690v3
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia V100
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS
1mo3mo12mo24mo
229.00/mo

Advanced GPU Dedicated Server - A5000

  • 128GB RAM
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia Quadro RTX A5000
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS
1mo3mo12mo24mo
269.00/mo

Enterprise GPU Dedicated Server - RTX A6000

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia Quadro RTX A6000
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS
1mo3mo12mo24mo
409.00/mo

Enterprise GPU Dedicated Server - RTX 4090

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: GeForce RTX 4090
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS
1mo3mo12mo24mo
409.00/mo

Enterprise GPU Dedicated Server - A40

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A40
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 37.48 TFLOPS
1mo3mo12mo24mo
439.00/mo
Flash sale to June 16

Enterprise GPU Dedicated Server - A100

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
1mo3mo12mo24mo
42% OFF Recurring (Was $799.00)
463.00/mo
New Arrival

Enterprise GPU Dedicated Server - A100(80GB)

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS
1mo3mo12mo24mo
1559.00/mo

Enterprise GPU Dedicated Server - H100

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia H100
  • Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS
1mo3mo12mo24mo
2099.00/mo

Multi-GPU Dedicated Server - 2xA100

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
  • Free NVLink Included
1mo3mo12mo24mo
1099.00/mo

Multi-GPU Dedicated Server - 4xA100

  • 512GB RAM
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • GPU: 4 x Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
1mo3mo12mo24mo
1899.00/mo

Multi-GPU Dedicated Server- 2xRTX 4090

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • GPU: 2 x GeForce RTX 4090
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS
1mo3mo12mo24mo
729.00/mo
New Arrival

Multi-GPU Dedicated Server- 2xRTX 5090

  • 256GB RAM
  • Dual Gold 6148
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • GPU: 2 x GeForce RTX 5090
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 20,480
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
1mo3mo12mo24mo
859.00/mo

Why Choose our AI Code LLMs Hosting

Database Mart enables powerful GPU hosting features on raw bare metal hardware, served on-demand. No more inefficiency, noisy neighbors, or complex pricing calculators.
Dedicated GPU Cards

Dedicated Nvidia GPU

When you rent a GPU server, whether it's a GPU dedicated server or GPU VPS, you benefit from dedicated GPU resources. This means you have exclusive access to the entire GPU card.
Premium Hardware

Premium Hardware

Our GPU dedicated servers and VPS are equipped with high-quality NVIDIA graphics cards, efficient Intel CPUs, pure SSD storage, and renowned memory brands such as Samsung and Hynix.
Full Root/Admin Access

Full Root/Admin Access

With full root/admin access, you will be able to take full control of your dedicated GPU servers for deep learning very easily and quickly.
99.9% Uptime Guarantee

99.9% Uptime Guarantee

With enterprise-class data centers and infrastructure, we provide a 99.9% uptime guarantee for hosted GPUs for deep learning and networks.
Dedicated IP

Dedicated IP

One of the premium features is the dedicated IP address. Even the cheapest GPU dedicated hosting plan is fully packed with dedicated IPv4 & IPv6 Internet protocols.
Expert Support and Maintenance

24/7/365 Free Expert Support

Our dedicated support team is comprised of experienced professionals. From initial deployment to ongoing maintenance and troubleshooting, we're here to provide the assistance you need, whenever you need it, without extra fee.

How to Choose the Best Coding LLMs

Here’s a detailed comparison of the strongest open-source coding large language models (LLMs) as of 2025: CodeGemma vs StarCoder2 vs DeepSeek-Coder V2 vs CodeLLaMA vs Codestral:

🔍 Quick Overview

Model Params Context Window Code Languages License Notable Strengths
CodeGemma 2B / 7B 8K tokens Python, C++, etc. Apache 2.0 Lightweight, fast, Google-backed
StarCoder2 3B / 7B / 15B 16K tokens 600+ languages BigCode (open) Fully open, rich plugin ecosystem
DeepSeek-Coder V2 7B / 33B / 100B 16K tokens Multilingual (EN + CN) DeepSeek (open) Dual-language support, top-tier coding ability
CodeLLaMA 7B / 13B / 34B / 70B 16K+ Multi-language Meta (open) Great for finetuning, popular base model
Codestral 22B 32K tokens 80+ languages MNPL (non-commercial) SOTA-level performance, FIM support

🧠 Performance Benchmarks (HumanEval / MBPP / FIM)

Model HumanEval (Pass@1) MBPP FIM Support Comment
Codestral 22B ~78-82% (SOTA) ✅ Yes Among top open models, long context
DeepSeek-Coder V2 (33B) ~76% ✅ Yes Near GPT-4 level in some tests
StarCoder2 (15B) ~65-70% ✅ Yes Versatile, high multilingual coverage
CodeLLaMA 70B ~70% ❌ Partial Great base model, often used in finetuning
CodeGemma 7B ~60-65% ❌ Limited ❌ No Best for edge/local use, lightweight

✅ Pros & Cons Summary

Model Pros Cons
CodeGemma Fast, small size, ideal for real-time coding & edge deployment Lower coding performance compared to others
StarCoder2 Full open-source, strong community, supports many languages Moderate performance ceiling
DeepSeek V2 Excellent bilingual performance (English + Chinese), high accuracy 33B and 100B models require strong hardware
CodeLLaMA Strong as base model for finetuning and instruction tuning Needs finetuning to perform well in specific tasks
Codestral State-of-the-art code performance, long context, Fill-in-the-middle Non-commercial license (MNPL), not usable in production

FAQs of GPU Servers for Code LLMs

Here’s a Frequently Asked Questions guide specifically for using GPU servers to run Code LLMs:

What are Code LLMs, and why do they need GPUs?

Code LLMs (like StarCoder2, DeepSeek-Coder, CodeLLaMA, etc.) are large language models fine-tuned for code generation, understanding, and completion. They often contain billions of parameters, which require GPU acceleration for fast inference and training.

Which frameworks are commonly used for inference?

🤖 vLLM – Fast transformer engine for serving LLMs
🧱 Transformers (HF) – Popular for research and standard deployment
🧠 llama.cpp – CPU/GPU inference for quantized GGUF models
🧪 Text Generation Web UI / Open WebUI – UI-based inference and testing

What tasks can I use Code LLMs for on a GPU server?

1. Code completion (like Copilot)
2. Bug fixing / debugging suggestions
3. Code summarization / explanation
4. Test case generation
5. Code translation (e.g., Python → Java)
6. Chat-style programming agents

Can I use these models interactively like ChatGPT?

Yes. Combine the LLM with a chat interface using:
1. Open WebUI
2. LangChain / LlamaIndex + Gradio
3. Ollama or LM Studio (for local GUI chat)

What’s the cheapest way to run Code LLMs?

Use GGUF quantized models with llama.cpp (runs on lower VRAM)
1. Choose spot instances or shared GPU platforms
2. Run 7B models locally on a 16–24 GB GPU
3. Use dedicated small GPU servers from hosting providers

What GPU specifications are best for serving Code LLMs?

For optimal performance with Code LLMs, consider GPUs with:
High memory capacity (24GB+ for models up to 70B parameters)
Tensor cores (4th gen Hopper architecture preferred)
High memory bandwidth (HBM3 in data-center GPUs like H100)
Multi-GPU configurations for larger models

How can I improve inference speed for Code LLMs?

Key optimization techniques include:
Quantization: 4-bit AWQ or GPTQ quantization can reduce memory requirements by 4x while maintaining accuracy
Efficient scheduling: Use systems like Sarathi-Serve that implement chunked prefilling to reduce latency by 2.6-5.6x compared to vLLM
Memory optimization: Techniques like paged attention (vLLM) and activation offloading can handle larger contexts 18