vLLM Hosting, Run LLMs Locally with vLLM

vLLM is ideal for anyone needing a high-performance LLM inference engine. Explore vLLM Hosting, where we delve into vLLM as a superior alternative to Ollama. Experience optimized hosting solutions tailored for your needs.

Choose Your vLLM Hosting Plans

DBM Mart offers best budget GPU servers for vLLM. Cost-effective vLLM hosting is ideal to deploy your own AI Chatbot. Note that the total size of the GPU memory should not be less than 1.2 times the model size.
Flash Sale to May 27

Professional GPU VPS - A4000

  • 32GB RAM
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • Once per 2 Weeks Backup
  • OS: Linux / Windows 10/ Windows 11
  • Dedicated GPU: Quadro RTX A4000
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS
1mo3mo12mo24mo
47% OFF Recurring (Was $179.00)
93.75/mo

Advanced GPU Dedicated Server - A5000

  • 128GB RAM
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia Quadro RTX A5000
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS
1mo3mo12mo24mo
269.00/mo
Flash Sale to May 27

Enterprise GPU Dedicated Server - RTX A6000

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia Quadro RTX A6000
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS
1mo3mo12mo24mo
40% OFF Recurring (Was $549.00)
329.00/mo

Enterprise GPU Dedicated Server - RTX 4090

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: GeForce RTX 4090
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS
1mo3mo12mo24mo
409.00/mo

Enterprise GPU Dedicated Server - A100

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
1mo3mo12mo24mo
639.00/mo

Multi-GPU Dedicated Server - 2xA100

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
  • Free NVLink Included
1mo3mo12mo24mo
1099.00/mo

Multi-GPU Dedicated Server - 4xA100

  • 512GB RAM
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • GPU: 4 x Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
1mo3mo12mo24mo
1899.00/mo
New Arrival

Enterprise GPU Dedicated Server - A100(80GB)

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia A100
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS
1mo3mo12mo24mo
1559.00/mo

Enterprise GPU Dedicated Server - H100

  • 256GB RAM
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • GPU: Nvidia H100
  • Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS
1mo3mo12mo24mo
2099.00/mo

6 Core Features of vLLM Hosting

Nvidia GPU dedicated server
High-Performance GPU Server
Equipped with top-level NVIDIA GPUs such as H100 and A100, it supports any AI inference.
Freely deploy any model
Freely Deploy any Model
Fully compatible with the vLLM platform, users can freely choose and deploy models, including: DeepSeek-R1, Gemma 3, Phi-4, and Llama 3.
Full Root/Admin Access
Full Root/Admin Access
With full root/admin access, you will be able to take full control of your dedicated GPU servers for vLLM very easily and quickly.
Data Privacy and Security
Data Privacy and Security
Provide dedicated servers to avoid sharing resources with other users and ensure full control of data.
24/7 technical support
24/7 Technical Support
7x24 hours online support helps users solve all problems from environment configuration to model optimization.
Customized services
Customized Service
Based on enterprise needs, we provide customized server configuration and technical consulting services to ensure maximum resource utilization.

vLLM vs Ollama vs SGLang vs TGI vs Llama.cpp

vLLM is best suited for applications that demand efficient, real-time processing of large language models.
FeaturesvLLMOllamaSGLangTGI(HF)Llama.cpp
Optimized forGPU (CUDA)CPU/GPU/M1/M2GPU/TPUGPU (CUDA)CPU/ARM
PerformanceHighMediumHighMediumLow
Multi-GPU✅ Yes✅ Yes✅ Yes✅ Yes❌ No
Streaming✅ Yes✅ Yes✅ Yes✅ Yes✅ Yes
API Server✅ Yes✅ Yes✅ Yes✅ Yes❌ No
Memory Efficient✅ Yes✅ Yes✅ Yes❌ No✅ Yes
Applicable scenariosHigh-performance LLM reasoning, API deploymentLocal LLM operation, lightweight reasoningMulti-step reasoning orchestration, distributed computingHugging Face ecosystem API deploymentLow-end device reasoning, embedded

FAQs of vLLM Hosting

Here are some frequently asked questions (FAQs) about vLLM hosting:

What is vLLM?

vLLM is a high-performance inference engine optimized for running large language models (LLMs) with low latency and high throughput. It is designed for serving models efficiently on GPU servers, reducing memory usage while handling multiple concurrent requests.

What are the hardware requirements for hosting vLLM?

To run vLLM efficiently, you'll need:
✅ GPU: NVIDIA GPU with CUDA support (e.g., A6000, A100, H100, 4090)
✅ CUDA: Version 11.8+
✅ GPU Memory: 16GB+ VRAM for small models, 80GB+ for large models (e.g., Llama-70B)
✅ Storage: SSD/NVMe recommended for fast model loading

What models does vLLM support?

vLLM supports most Hugging Face Transformer models, including:
✅ Meta’s LLaMA (Llama 2, Llama 3)
✅ DeepSeek, Qwen, Gemma, Mistral, Phi
✅ Code models (Code Llama, StarCoder, DeepSeek-Coder)
✅ MosaicML's MPT, Falcon, GPT-J, GPT-NeoX, and more

Can I run vLLM on CPU?

🚫 No, vLLM is optimized for GPU inference only. If you need CPU-based inference, use llama.cpp instead.

Does vLLM support multiple GPUs?

✅ Yes, vLLM supports multi-GPU inference using tensor-parallel-size.

Can I fine-tune models using vLLM?

🚫 No, vLLM is only for inference. For fine-tuning, use PEFT (LoRA), Hugging Face Trainer, or DeepSpeed.

How do I optimize vLLM for better performance?

✅ Use --max-model-len to limit context size
✅ Use tensor parallelism (--tensor-parallel-size) for multi-GPU
✅ Enable quantization (4-bit, 8-bit) for smaller models
✅ Run on high-memory GPUs (A100, H100, 4090, A6000)

Does vLLM support model quantization?

🟠 Not directly. But you can load quantized models using bitsandbytes or AutoGPTQ before running them in vLLM.