Gemma Hosting — Deploy Gemma 3/2 Models with Ollama, vLLM, TGI, TensorRT-LLM & GGML

Unlock the full potential of Google DeepMind’s Gemma 2B, 7B, 9B, and 27B models with our optimized Gemma Hosting solutions. Whether you prefer low-latency inference via vLLM, user-friendly setup with Ollama, enterprise-grade performance through TensorRT-LLM, or offline deployment using GGML, our infrastructure supports it all. Ideal for AI research, chatbot APIs, fine-tuning, or private in-house applications, Gemma Hosting ensures scalable performance with GPU-powered servers. Deploy Gemma models securely and efficiently—tailored for developers, enterprises, and innovators.

Gemma Hosting with Ollama — GPU Recommendation

Deploy and run Google’s Gemma models, such as Gemma3-27B and 12B, using Ollama — a powerful, user-friendly platform for managing large language models. With one-line model deployment, GPU acceleration, and support for custom prompts and workflows, Ollama makes Gemma hosting seamless for developers and teams. Ideal for local inference, private deployments, and lightweight LLM applications on servers with 8GB–24GB+ VRAM.
Model NameSize (4-bit Quantization)Recommended GPUsTokens/s
gemma3:1b815MBP1000 < GTX1650 < GTX1660 < RTX206028.90-43.12
gemma2:2b1.6GBP1000 < GTX1650 < GTX1660 < RTX206019.46-38.42
gemma3:4b3.3GBGTX1650 < GTX1660 < RTX2060 < T1000 < RTX3060 Ti < RTX4060 < RTX506028.36-80.96
gemma2:9b5.4GBT1000 < RTX3060 Ti < RTX4060 < RTX506012.83-21.35
gemma3n:e2b5.6GBT1000 < RTX3060 Ti < RTX4060 < RTX506030.26-56.36
gemma3n:e4b7.5GBA4000 < A5000 < V100 < RTX409038.46-70.90
gemma3:12b8.1GBA4000 < A5000 < V100 < RTX409030.01-67.92
gemma2:27b16GBA5000 < A6000 < RTX4090 < A100-40gb < H100 = RTX509028.79-47.33
gemma3:27b17GBA5000 < RTX4090 < A100-40gb < H100 = RTX509028.79-47.33

Gemma Hosting with vLLM + Hugging Face — GPU Recommendation

Host and deploy Google’s Gemma models efficiently using the vLLM inference engine integrated with Hugging Face Transformers. This setup enables lightning-fast, memory-optimized inference for models like Gemma3-12B and 27B, thanks to vLLM’s advanced kernel fusion, continuous batching, and tensor parallelism. By leveraging Hugging Face’s ecosystem and vLLM’s scalability, developers can build robust APIs, chatbots, and research tools with minimal latency and resource usage. Ideal for GPU servers with 24GB+ VRAM.
Model NameSize (16-bit Quantization)Recommended GPU(s)Concurrent RequestsTokens/s
google/gemma-3n-E4B-it
google/gemma-3-4b-it
8.1GBA4000 < A5000 < V100 < RTX4090502014.88-7214.10
google/gemma-2-9b-it18GBA5000 < A6000 < RTX409050951.23-1663.13
google/gemma-3-12b-it
google/gemma-3-12b-it-qat-q4_0-gguf
23GBA100-40gb < 2*A100-40gb< H10050477.49-4193.44
google/gemma-2-27b-it
google/gemma-3-27b-it
google/gemma-3-27b-it-qat-q4_0-gguf
51GB2*A100-40gb < A100-80gb < H100501231.99-1990.61
✅ Explanation:
  • Recommended GPUs: From left to right, performance from low to high
  • Tokens/s: from benchmark data.

Choose The Best GPU Plans for Gemma 3/2 Hosting

  • GPU Card Classify :
  • GPU Server Price:
  • GPU Use Scenario:
  • GPU Memory:
  • GPU Card Model:

Express GPU Dedicated Server - P1000

64.00/mo
1mo3mo12mo24mo
Order Now
  • 32GB RAM
  • GPU: Nvidia Quadro P1000
  • Eight-Core Xeon E5-2690
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Pascal
  • CUDA Cores: 640
  • GPU Memory: 4GB GDDR5
  • FP32 Performance: 1.894 TFLOPS
Mid Year Sale

Basic GPU Dedicated Server - T1000

59.50/mo
50% OFF Recurring (Was $119.00)
1mo3mo12mo24mo
Order Now
  • 64GB RAM
  • GPU: Nvidia Quadro T1000
  • Eight-Core Xeon E5-2690
  • 120GB + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 896
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 2.5 TFLOPS

Basic GPU Dedicated Server - GTX 1650

99.00/mo
1mo3mo12mo24mo
Order Now
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 896
  • GPU Memory: 4GB GDDR5
  • FP32 Performance: 3.0 TFLOPS

Basic GPU Dedicated Server - GTX 1660

139.00/mo
1mo3mo12mo24mo
Order Now
  • Single GPU Specifications:
  • Microarchitecture: Turing
  • CUDA Cores: 1408
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 5.0 TFLOPS

Advanced GPU Dedicated Server - V100

229.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: Nvidia V100
  • Dual 12-Core E5-2690v3
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Professional GPU Dedicated Server - RTX 2060

199.00/mo
1mo3mo12mo24mo
Order Now
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 1920
  • Tensor Cores: 240
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 6.5 TFLOPS
New Arrival

Advanced GPU Dedicated Server - RTX 2060

239.00/mo
1mo3mo12mo24mo
Order Now
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 1920
  • Tensor Cores: 240
  • GPU Memory: 6GB GDDR6
  • FP32 Performance: 6.5 TFLOPS
Mid Year Sale

Advanced GPU Dedicated Server - RTX 3060 Ti

172.08/mo
28% OFF Recurring (Was $239.00)
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: GeForce RTX 3060 Ti
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 4864
  • Tensor Cores: 152
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 16.2 TFLOPS

Professional GPU VPS - A4000

129.00/mo
1mo3mo12mo24mo
Order Now
  • 32GB RAM
  • 24 CPU Cores
  • 320GB SSD
  • 300Mbps Unmetered Bandwidth
  • Once per 2 Weeks Backup
  • OS: Linux / Windows 10/ Windows 11
  • Dedicated GPU: Quadro RTX A4000
  • CUDA Cores: 6,144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS
Mid Year Sale

Advanced GPU Dedicated Server - A4000

198.09/mo
29% OFF Recurring (Was $279.00)
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: Nvidia Quadro RTX A4000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Advanced GPU Dedicated Server - A5000

269.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: Nvidia Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Enterprise GPU Dedicated Server - A40

439.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A40
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 37.48 TFLOPS
Mid Year Sale

Basic GPU Dedicated Server - RTX 5060

141.75/mo
25% OFF Recurring (Was $189.00)
1mo3mo12mo24mo
Order Now
  • 64GB RAM
  • GPU: Nvidia GeForce RTX 5060
  • 24-Core Platinum 8160
  • 120GB SSD + 960GB SSD
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Blackwell 2.0
  • CUDA Cores: 4608
  • Tensor Cores: 144
  • GPU Memory: 8GB GDDR7
  • FP32 Performance: 23.22 TFLOPS
New Arrival

Enterprise GPU Dedicated Server - RTX 5090

479.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: GeForce RTX 5090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 20,480
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS
Mid Year Sale

Enterprise GPU Dedicated Server - A100

495.38/mo
38% OFF Recurring (Was $799.00)
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - A100(80GB)

1559.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 19.5 TFLOPS

Enterprise GPU Dedicated Server - H100

2099.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia H100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 100Mbps-1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Hopper
  • CUDA Cores: 14,592
  • Tensor Cores: 456
  • GPU Memory: 80GB HBM2e
  • FP32 Performance: 183TFLOPS

Multi-GPU Dedicated Server- 2xRTX 4090

729.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 2 x GeForce RTX 4090
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 16,384
  • Tensor Cores: 512
  • GPU Memory: 24 GB GDDR6X
  • FP32 Performance: 82.6 TFLOPS
New Arrival

Multi-GPU Dedicated Server- 2xRTX 5090

859.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 2 x GeForce RTX 5090
  • Dual Gold 6148
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 20,480
  • Tensor Cores: 680
  • GPU Memory: 32 GB GDDR7
  • FP32 Performance: 109.7 TFLOPS

Multi-GPU Dedicated Server - 2xA100

1299.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: Nvidia A100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS
  • Free NVLink Included

Multi-GPU Dedicated Server - 2xRTX 3060 Ti

319.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: 2 x GeForce RTX 3060 Ti
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 4864
  • Tensor Cores: 152
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 16.2 TFLOPS

Multi-GPU Dedicated Server - 2xRTX 4060

269.00/mo
1mo3mo12mo24mo
Order Now
  • Single GPU Specifications:
  • Microarchitecture: Ada Lovelace
  • CUDA Cores: 3072
  • Tensor Cores: 96
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 15.11 TFLOPS

Multi-GPU Dedicated Server - 2xRTX A5000

439.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: 2 x Quadro RTX A5000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Multi-GPU Dedicated Server - 2xRTX A4000

359.00/mo
1mo3mo12mo24mo
Order Now
  • 128GB RAM
  • GPU: 2 x Nvidia RTX A4000
  • Dual 12-Core E5-2697v2
  • 240GB SSD + 2TB SSD
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6144
  • Tensor Cores: 192
  • GPU Memory: 16GB GDDR6
  • FP32 Performance: 19.2 TFLOPS

Multi-GPU Dedicated Server - 3xRTX 3060 Ti

369.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x GeForce RTX 3060 Ti
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 4864
  • Tensor Cores: 152
  • GPU Memory: 8GB GDDR6
  • FP32 Performance: 16.2 TFLOPS

Multi-GPU Dedicated Server - 3xV100

469.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x Nvidia V100
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A5000

539.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x Quadro RTX A5000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 8192
  • Tensor Cores: 256
  • GPU Memory: 24GB GDDR6
  • FP32 Performance: 27.8 TFLOPS

Multi-GPU Dedicated Server - 3xRTX A6000

899.00/mo
1mo3mo12mo24mo
Order Now
  • 256GB RAM
  • GPU: 3 x Quadro RTX A6000
  • Dual 18-Core E5-2697v4
  • 240GB SSD + 2TB NVMe + 8TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Multi-GPU Dedicated Server - 4xA100

1899.00/mo
1mo3mo12mo24mo
Order Now
  • 512GB RAM
  • GPU: 4 x Nvidia A100
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 6912
  • Tensor Cores: 432
  • GPU Memory: 40GB HBM2
  • FP32 Performance: 19.5 TFLOPS

Multi-GPU Dedicated Server - 4xRTX A6000

1199.00/mo
1mo3mo12mo24mo
Order Now
  • 512GB RAM
  • GPU: 4 x Quadro RTX A6000
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS

Multi-GPU Dedicated Server - 8xV100

1499.00/mo
1mo3mo12mo24mo
  • 512GB RAM
  • GPU: 8 x Nvidia Tesla V100
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Volta
  • CUDA Cores: 5,120
  • Tensor Cores: 640
  • GPU Memory: 16GB HBM2
  • FP32 Performance: 14 TFLOPS

Multi-GPU Dedicated Server - 8xRTX A6000

2099.00/mo
1mo3mo12mo24mo
Order Now
  • 512GB RAM
  • GPU: 8 x Quadro RTX A6000
  • Dual 22-Core E5-2699v4
  • 240GB SSD + 4TB NVMe + 16TB SATA
  • 1Gbps
  • OS: Windows / Linux
  • Single GPU Specifications:
  • Microarchitecture: Ampere
  • CUDA Cores: 10,752
  • Tensor Cores: 336
  • GPU Memory: 48GB GDDR6
  • FP32 Performance: 38.71 TFLOPS
What is Gemma Hosting?

What is Gemma Hosting?

Gemma Hosting is the deployment and serving of Google’s Gemma language models (like Gemma 2B and Gemma 7B) on dedicated hardware or cloud infrastructure for various applications such as chatbots, APIs, or research environments.

Gemma is a family of open-source, lightweight large language models (LLMs) released by Google, designed for efficient inference on consumer GPUs and enterprise workloads. They are smaller and more efficient than models like GPT or LLaMA, making them ideal for cost-effective hosting.

LLM Benchmark Results for Gemma 1B/2B/4B/9B/12B/27B Hosting

Explore benchmark results for hosting Google's Gemma language models across various parameter sizes — from 1B to 27B. This report highlights key performance metrics such as inference speed (tokens per second), VRAM usage, and GPU compatibility across platforms like Ollama, vLLM, and Hugging Face Transformers. Understand how different GPU configurations (e.g., RTX 4090, A100, H100) handle Gemma models in real-world hosting scenarios, and make informed decisions for efficient LLM deployment at scale.
Ollama Hosting

Ollama Benchmark for Gemma

This benchmark evaluates the performance of Google’s Gemma models (2B, 7B, etc.) running on the Ollama platform. It includes key metrics such as tokens per second, GPU memory usage, and startup latency across different hardware (e.g., RTX 4060, 4090, A100). Ollama's streamlined local deployment makes it easy to test and run Gemma models efficiently, even on consumer-grade GPUs. Ideal for developers seeking low-latency, private inference for chatbots, coding assistants, and research tools.
vLLM Hosting

vLLM Benchmark for Gemma

This benchmark report showcases the performance of Google’s Gemma models (e.g., 2B, 7B) running on the vLLM inference engine — optimized for throughput and scalability. It includes detailed metrics such as tokens-per-second (TPS), GPU memory consumption, and latency across various hardware (like A100, H100, RTX 4090). vLLM's continuous batching and paged attention enable Gemma to serve multiple concurrent requests efficiently, making it a powerful choice for production-grade LLM APIs, assistants, and enterprise workloads.

How to Deploy Gemma LLMs with Ollama/vLLM

Ollama Hosting

Install and Run Gemma Locally with Ollama >

Ollama is a self-hosted AI solution to run open-source large language models, such as DeepSeek, Gemma, Llama, Mistral, and other LLMs locally or on your own infrastructure.
vLLM Hosting

Install and Run Gemma Locally with vLLM v1 >

vLLM is an optimized framework designed for high-performance inference of Large Language Models (LLMs). It focuses on fast, cost-efficient, and scalable serving of LLMs.

What Does Gemma Hosting Stack Include?

gpu server

Hardware Stack

✅ GPU: NVIDIA RTX 3060 / T4 / 4060 (8–12 GB VRAM), NVIDIA RTX 4090 / A100 / H100 (24–80 GB VRAM)

✅ CPU: 4+ cores (Intel/AMD)

✅ RAM: 16–32 GB

✅ Storage: SSD, 50–100 GB free (for model files and logs)

✅ Networking: 1 Gbps for API access (if remote)

✅ Power & Cooling: Efficient PSU & cooling system, Required for stable GPU performance

Software Stack

Software Stack

✅ OS: Ubuntu 20.04 / 22.04 LTS(preferred), or other Linux distros

✅ Driver & CUDA: NVIDIA GPU Drivers + CUDA 11.8+ (depends on inference engine)

✅ Model Runtime: Ollama/vLLM/ Hugging Face Transformers/Text Generation Inference (TGI)

✅ Model Format: Gemma FP16 / INT4 / GGUF (depending on use case and platform)

✅ Containerization: Docker + NVIDIA Container Toolkit (optional but recommended for deployment)

✅ API Framework: FastAPI, Flask, or Node.js-based backend for serving LLM endpoints

✅ Monitoring: Prometheus + Grafana, or basic logging tools

✅ Optional Tools: Nginx (reverse proxy), Redis (cache), JWT/Auth layer for production deployment

Why Gemma Hosting Needs a GPU Hardware + Software Stack

Gemma Models Are GPU-Accelerated by Design

Gemma Models Are GPU-Accelerated by Design

Google’s Gemma models (e.g., 4B, 12B, 27B) are designed to run efficiently on GPUs. These models involve billions of parameters and perform matrix-heavy computations—tasks that CPUs handle slowly and inefficiently. GPUs (like NVIDIA A100, H100, or even RTX 4090) offer thousands of cores optimized for parallel processing, enabling fast inference and training.
Inference Speed and Latency Optimization

Inference Speed and Latency Optimization

Whether you're serving an API, chatbot, or batch processing tool, low-latency response is critical. A properly tuned GPU setup with frameworks like vLLM, Ollama, or Hugging Face Transformers allows you to serve multiple concurrent users with sub-second latency, which is almost impossible to achieve with CPU-only setups.
High Memory and Efficient Software Stack Required

High Memory and Efficient Software Stack Required

Gemma models often require 8–80 GB of GPU VRAM, depending on their size and quantization format (FP16, INT4, etc.). Without enough VRAM and memory bandwidth, models will fail to load or run slowly.
Scalability and Production-Ready Deployment

Scalability and Production-Ready Deployment

To deploy Gemma models at scale—for use cases like LLM APIs, chatbots, or internal tools—you need an optimized environment. This includes load balancers, monitoring, auto-scaling infrastructure, and inference-optimized backends. Such production-level deployments rely heavily on GPU-enabled hardware and a carefully configured software stack to maintain uptime, performance, and reliability.

Self-hosted Gemma Hosting vs. Gemma as a Service

Feature Self-hosted Gemma Hosting Gemma as a Service (aaS)
Deployment Control Full control over model, infra, scaling & updates Limited — managed by provider
Customization High — optimize models, quantization, backends Low — predefined settings and APIs
Performance Tuned for specific workloads (e.g. vLLM, TensorRT-LLM) General-purpose, may include usage limits
Initial Cost High — GPU server or cluster required Low — pay-as-you-go pricing
Recurring Cost Lower long-term for consistent usage Can get expensive at scale or high usage
Latency Lower (models run locally or in private cloud) Higher due to shared/public infrastructure
Security & Compliance Private data stays in your environment Depends on provider’s data policies
Scalability Manual or automated scaling with Kubernetes, etc. Automatically scalable (but capped by plan)
DevOps Effort High — setup, monitoring, updates None — fully managed
Best For Companies needing full control & optimization Startups, small teams, quick prototyping

FAQs of Gemma 3/2 Models Hosting

What are Gemma models, and who developed them?

Gemma is a family of open-weight language models developed by Google DeepMind, optimized for fast and efficient deployment. They are similar in architecture to Google's Gemini and include variants like Gemma-3 1B, 4B, 12B, and 27B.

What are the typical use cases for hosting Gemma models?

Gemma models are well-suited for:
  • Chatbots and conversational agents
  • Text summarization, Q&A, and content generation
  • Fine-tuning on domain-specific data
  • Academic or commercial NLP research
  • On-premises privacy-compliant LLM applications
  • Which inference engines are compatible with Gemma models?

    You can deploy Gemma models using:
  • vLLM (optimized for high-throughput inference)
  • Ollama (easy local serving with model quantization)
  • TensorRT-LLM (for performance on NVIDIA GPUs)
  • Hugging Face Transformers + Accelerate
  • Text Generation Inference (TGI)
  • Can Gemma models be fine-tuned or customized?

    Yes. Gemma supports LoRA fine-tuning and full fine-tuning, making it a good choice for domain-specific LLMs. You can use tools like PEFT, Hugging Face Transformers, or Axolotl for training.

    What are the benefits of self-hosting Gemma vs using it via API?

    Self-hosting provides:
  • Better data privacy
  • Customization flexibility
  • Lower cost at scale
  • Lower latency (for edge or private deployment)
  • However, APIs are easier to get started with and require no infrastructure.

    Is Gemma available on Hugging Face for vLLM?

    Yes. Most Gemma 3 models (1B, 4B, 12B, 27B) are available on Hugging Face and can be loaded into vLLM using 16-bit quantization.

    Other Popular LLM Models

    DBM has a variety of high-performance Nvidia GPU servers equipped with one or more RTX 4090 24GB, RTX A6000 48GB, A100 40/80GB, which are very suitable for LLMs inference. Choosing the Right GPU for Popular LLMs on Ollama
    Qwen2.5

    Qwen2.5 Hosting >

    Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset, encompassing up to 18 trillion tokens. The model supports up to 128K tokens and has multilingual support.
    deepseek Hosting

    Deepseek Hosting >

    DeepSeek Hosting enables users to serve, infer, or fine-tune DeepSeek models (like R1, V2, V3, or Distill variants) through either self-hosted environments or cloud-based APIs.
    LLaMA 3.1 Hosting

    LLaMA 3.1 Hosting >

    Llama 3.1 is the state-of-the-art, available in 8B, 70B and 405B parameter sizes. Meta’s smaller models are competitive with closed and open models that have a similar number of parameters.
    Phi-4 Hosting

    Phi-4/3/2 Hosting >

    Phi is a family of lightweight 3B (Mini) and 14B (Medium) state-of-the-art open models by Microsoft.